#### Thermochimica Acta, 18 (1977) 21-36

C Elsevier Scientific Publishing Company, Amsterdam - Printed in Belgium

# PHASE DIAGRAM FOR THE TERNARY SYSTEM LiCI-CaCl2-CaCrO4\*

## ROBERT P. CLARK

Sandia Laboratories, Albuquerque, N. M. 87115 (U. S. A.)

#### ABSTRACT

The phase diagram for the system LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> has been studied using differential thermal analysis. LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> has been shown by X-ray diffraction to be a stable, diagonal section of the Li, Ca//Cl, CrO<sub>4</sub> reciprocal ternary system. The three binary systems are: LiCl-CaCl<sub>2</sub> which exhibits a double salt (LiCaCl<sub>3</sub>), which decomposes without melting at 439°C and a eutectic at 36.3 mole % CaCl<sub>2</sub> (m.p. 487°C); CaCl<sub>2</sub>-CaCrO<sub>4</sub> which shows a eutectic at 23.4 mole % CaCrO<sub>4</sub> (m.p. 660°C); and LiCl-CaCrO<sub>4</sub> with a eutectic at 14.3 mole % CaCrO<sub>4</sub> (m.p. 538°C).

In the ternary system, a eutectic exists at 63.2 mole % LiCl-32.9% CaCl<sub>2</sub>-3.9% CaCrO<sub>4</sub> (m.p. 479°C). In addition, a four-phase equilibrium, involving all solid phases, exists at nearly all compositions at 435°C.

Isotherms are shown for the liquidus surface (primary crystallization) and for the secondary crystallization surface. Isothermal and vertical sections through the ternary phase diagram are shown.

#### INTRODUCTION

Thermal cells (voltaic cells employing a molten salt electrolyte) frequently employ the electrochemical cell system<sup>1</sup>: Ca/LiCl-KCl-CaCrO<sub>4</sub>/Fe. At the elevated internal temperatures (500 to 600 °C) attained in thermal cells, the Ca anode will react chemically<sup>2</sup> with the LiCl to form CaCl<sub>2</sub>. During the course of this reaction the salt system LiCl-KCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> exists, and a knowledge of the phase relationships in that system is important to thermal cell technology. The system LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> is one of four ternary systems which make up the overall salt mixture. The other three ternaries have been previously studied: the LiCl-KCl-CaCl<sub>2</sub> phase diagram has been reported by Plyushchev and Kovalev<sup>3</sup>, and the other two systems, LiCl-KCl-CaCrO<sub>4</sub> and KCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub>, have been studied in this laboratory<sup>4.5</sup>.

<sup>\*</sup>Presented at the 6th North American Thermal Analysis Society Conference, Princeton, N. J., June 20-23, 1976.

LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> is a stable diagonal section of the Li, Ca//Cl, CrO<sub>4</sub> reciprocal ternary system. The three binary systems, LiCl-CaCl<sub>2</sub>, LiCl-CaCrO<sub>4</sub>, and CaCl<sub>2</sub>-CaCrO<sub>4</sub>, have been previously investigated. The phase diagram for LiCl-CaCrO<sub>4</sub> was reported as part of a general investigation of the LiCl-KCl-CaCrO<sub>4</sub> ternary system<sup>4</sup>, and the CaCl<sub>2</sub>-CaCrO<sub>4</sub> binary phase diagram was also reported recently<sup>6</sup>. The LiCl-CaCl<sub>2</sub> binary system has been studied several times, most recently by Golubeva and Bergman<sup>7</sup>. Because of variances in previously reported data, the LiCl-CaCl<sub>2</sub> phase diagram was redetermined in the present work.

#### EXPERIMENTAL

The samples used in this investigation were ultra-pure anhydrous  $CaCl_2$  (99.95%) from Research Organic/Inorganic Chemical Corporation, Sun Valley, Calif.; high-purity CaCrO<sub>4</sub> (assay 99.85%) prepared from reagent grade CaCO<sub>3</sub> and Na<sub>2</sub>CrO<sub>4</sub> using a method previously described<sup>4</sup>; and reagent grade LiCl. LiCl and CaCl<sub>2</sub> were vacuum dried for 16 h at 120°C, and CaCrO<sub>4</sub> was vacuum dried at 400°C for 4 h.

Phase change data were determined by DTA using a technique previously described in detail<sup>5</sup>. The DTA samples were prepared in a controlled atmosphere "dry room" in a manner described in the same reference. Data were obtained for mixtures which had a liquidus temperature below 800°C. Above that temperature thermal decomposition of CaCrO<sub>4</sub> began to occur.

A few samples of selected composition were analyzed using X-ray diffraction. The X-ray diffraction results were used to confirm the stability of the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> system.

## · RESULTS

## $CaCl_2$ -CaCrO<sub>4</sub> binary system

The phase diagram for this system has been previously reported<sup>6</sup> and is shown in Fig. 1. This diagram shows a simple eutectic system with a eutectic composition of 23.4 mole % CaCrO<sub>4</sub> which melts at 660°C.

## LiCl-CaCrO<sub>4</sub> binary system

LiCl and CaCrO<sub>4</sub> form a simple eutectic melting at 538°C with a eutectic composition of 14.3 mole % CaCrO<sub>4</sub>. This diagram, which has been previously published<sup>4</sup>, is shown in Fig. 2.

# LiCl-CaCl<sub>2</sub> binary system

The diagram for this system has been redetermined and is shown in Fig. 3. A double salt (LiCaCl<sub>3</sub>) forms at 50 mole % CaCl<sub>2</sub> and is stable at temperatures below 439 °C. The LiCaCl<sub>3</sub> decomposes without melting at 439 °C to form LiCl and CaCl<sub>2</sub>. A eutectic exists at 36.3 mole % CaCl<sub>2</sub> with a melting point of 487 °C.



Fig. 1. CaCl2-CaCrO4 binary phase diagram.



Fig. 2. LiCl-CaCrO<sub>4</sub> binary phase diagram.



Fig. 3. LiCl-CaCl<sub>2</sub> binary phase diagram.

# LiCi-CaCl<sub>2</sub>-CaCrO<sub>4</sub> ternary system

The DTA data obtained for the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> ternary system are shown in Table 1. In this table the temperatures shown are those where the designated phase disappears on heating. The reactions for the disappearance of the four solid phases can be written as follows:

$$\alpha (LiCl) \rightleftharpoons L$$
  

$$\beta (CaCl_2) \rightleftharpoons L$$
  

$$\gamma (CaCrO_4) \rightleftharpoons L$$
  

$$\delta (LiCaCl_3) \rightleftharpoons \alpha + \beta$$

A few representative DTA curves are illustrated in Fig. 4. These particular curves show a variety of phase transformations. Curve (a) is for a composition such that, on heating, the decomposition of the  $\delta$  phase (LiCaCl<sub>3</sub>) is observed at 435°C; the disappearance of the  $\alpha$  crystals (LiCl) is noted at 479°C; the  $\beta$  phase (CaCl<sub>2</sub>) is liquid above 552°C; and finally the  $\gamma$  phase (CaCrO<sub>4</sub>) completely disappears at 761°C. Curve (b) illustrates a mixture in which the  $\beta$  (CaCl<sub>2</sub>) and  $\gamma$  (CaCrO<sub>4</sub>) phases become totally liquid at the same temperature (610°C). The decomposition of the  $\delta$  phase (LiCaCl<sub>3</sub>) and the transformation of the  $\alpha$  phase (LiCl) to liquid occur at 435 and 479°C, respectively, just as they do in curves (a) and (c). Curve (c) is for the ternary eutectic composition and shows the disappearance of the  $\alpha$  (LiCl),  $\beta$  (CaCl<sub>2</sub>) and  $\gamma$  (CaCrO<sub>4</sub>) phases at a single temperature (479°C):

# TABLE I

DTA DATA FOR PHASE DIAGRAM FOR LICI-CaCl<sub>2</sub>-CaCrO<sub>4</sub> SYSTEM

| Mole %       |                   |          | Temperature of phase disappearance (°C) |                           |               |                             |
|--------------|-------------------|----------|-----------------------------------------|---------------------------|---------------|-----------------------------|
| LICI         | CaCl <sub>2</sub> | CaCrO4   | α<br>(LiCl)                             | β<br>(CaCl <sub>2</sub> ) | 7<br>(CaCrO₄) | δ<br>(LiCaCl <sub>3</sub> ) |
| 100          | ·                 |          | 614                                     |                           |               |                             |
| 95.9         | 4.1               | <u> </u> | 605                                     |                           |               | 439                         |
| 91.3         | 8.7               | · · ·    | 590                                     | 475                       |               | 439                         |
| 85.9         | 14.1              | —        | 574                                     | 475                       | -             | 439                         |
| 79.7         | 20.3              | —        | 550                                     | 487                       |               | 439                         |
| 72.4         | 27.6              |          | 525                                     | 485                       |               | 438                         |
| 63.6         | 36.4              | <u></u>  | 487                                     | 487                       |               | 439                         |
| 52.9         | 47.1              | —        | 496                                     | 548                       |               | 439                         |
| 39.6         | 60.4              | <u> </u> | 490                                     | 618                       |               | 432                         |
| 22.5         | 77.5              | <u> </u> | 486                                     | 686                       |               | 432                         |
|              | 100               |          |                                         | 759                       |               |                             |
| 98.6         | · ·               | 1.4      | 600                                     |                           | 538           |                             |
| 96.5         | 2.0               | 1.5      | <b>599</b>                              |                           | 532           |                             |
| 91.8         | 6.5               | 1.6      | 587                                     | 465                       | 520           | 438                         |
| 86.5         | 11.8              | 1.7      | 572                                     | 474                       | 505           | 438                         |
| 80.3         | 17.9              | 1.8      | 552                                     | 474                       | 490           | 439                         |
| 72.9         | 25.1              | 2.0      | 523                                     | 477                       | 483           | 439                         |
| 64.1         | 33.7              | 2.2      | 485                                     | 479                       | 481           | 439                         |
| 53.4         | 44.2              | 2.4      | 479                                     | 530                       | 488           | 438                         |
| 40.0         | 57.3              | 2.7      | 479                                     | 594                       | 492           | 438                         |
| 22.8         | 74.1              | 3.1      | 465                                     | 667                       | 523           | 437                         |
|              | 96.4              | 3.6      | •••                                     | 740                       | 660           |                             |
| 97.1         |                   | 2.9      | 589                                     |                           | 538           |                             |
| 92.5         | 4.4               | 3.1      | 583                                     | 455                       | 536           | 438                         |
| 87.1         | 9.5               | 3.4      | 570                                     | 470                       | 525           | 438                         |
| 80.9         | 154               | 3.7      | 550                                     | 477                       | 512           | 438                         |
| 73 5         | 27.5              | 4.0      | 571                                     | 479                       | 499           | 438                         |
| 64.7         | 30.9              | 4.4      | 492                                     | 479                       | 484           | 437                         |
| 53.0         | A1 2              | 49       | 481                                     | 499                       | 491           | 437                         |
| AO A         | 54 1              | 55       | 481                                     | 574                       | 526           | 436                         |
|              | 70.6              | 63       | 476                                     | 645                       | 575           | 430                         |
| <i>23.</i> 1 | 977               | 73       | 470                                     | 725                       | 660           | -13-4                       |
| 05 4         | J 2 1             | 4.6      | 578                                     | مر د ه                    | 538           |                             |
| 02 1         |                   | 4.0      | 570                                     |                           | 538           |                             |
| 77.I<br>977  | 72                | 51       | 568                                     | 469                       | 538           | A27                         |
| 0/./<br>91 < | 13.0              | 55       | 548                                     | 477                       | 528           | 434                         |
| 74.1         | 19.8              | 6.1      | 573                                     | 479                       | 514           | 436                         |
| 65 3         | 28.0              | 67       | 495                                     | 480                       | 536           | 435                         |
| 54.5         | 38.1              | 74       | 491                                     | 498                       | 547           | 435                         |
| 40.9         | 50.8              | 8.3      | 480                                     | 556                       | 545           | 434                         |
| 23.4         | 67.1              | 9.5      | 476                                     | 632                       | 591           | 435                         |
|              | 88.9              | 11.1     |                                         | 708                       | 660           |                             |
| 93.6         |                   | 6.4      | 568                                     |                           | 538           |                             |
| 88.3         | 4.8               | 6.9      | 565                                     | 459                       | 537           | 435                         |
| 82.1         | 10.5              | 7.4      | 540                                     | 473                       | 536           | 434                         |
| 749          | 17.1              | 8.1      | 531                                     | 478                       | 548           | 434                         |

| TABLE 1 (continued) |                   |              |                       |                                         |                            |                             |  |  |
|---------------------|-------------------|--------------|-----------------------|-----------------------------------------|----------------------------|-----------------------------|--|--|
| Mole %              |                   |              | Temperat              | Temperature of phase disappearance (°C) |                            |                             |  |  |
| LICI                | CaCl <sub>2</sub> | CaCr04       | a<br>(LiCl)           | β<br>(CaCl <sub>2</sub> )               | 7<br>(CaCrO <sub>4</sub> ) | δ<br>(LiCaCl <sub>3</sub> ) |  |  |
| 65.9                | 25.2              | 8.9          | 501                   | 481                                     | 558                        | 434                         |  |  |
| 55.0                | 35.0              | 10.0         | 481                   | 490                                     | 569                        | 434                         |  |  |
| 41.4                | 47.4              | 11.2         | 481                   | 547                                     | . 578                      | 436                         |  |  |
| 23.7                | 63.4              | 12.9         | 4/9                   | 012                                     | 602                        | 430                         |  |  |
|                     | 84.9              | 12.1         | <b>560</b>            | 093                                     | 519                        |                             |  |  |
| 91.7                | 74                | 86           | 556                   |                                         | 542                        |                             |  |  |
| 82.7                | 7.9               | 9.4          | 546                   | 471                                     | 546                        | 435                         |  |  |
| 75.4                | 14.4              | 10.2         | 528                   | 479                                     | 572                        | 436                         |  |  |
| 66.5                | 22.2              | 11.3         | 505                   | 481                                     | 593                        | 436                         |  |  |
| 55.6                | 31.8              | 12.6         | 481                   | 481                                     | 603                        | 435                         |  |  |
| 41.8                | 44.0              | 14.2         | 481                   | 541                                     | 616                        | 435                         |  |  |
| 24.0                | 59.7              | 16.3         | 479                   | 603                                     | 632                        | 436                         |  |  |
|                     | 80.8              | 19.2         |                       | 670                                     | 660                        |                             |  |  |
| 89.6                | <u> </u>          | 10.4         | 552                   |                                         | 538                        |                             |  |  |
| 83.4                | 5.3               | 11.3         | 547                   | 465                                     | 547                        | 436                         |  |  |
| 76.0                | 11.6              | 12.4         | 536                   | 473                                     | 583                        | 436                         |  |  |
| 67.1                | 19.2              | 13.7         | 517                   | 481                                     | 612                        | 430                         |  |  |
| 20.1                | 28.6              | 10.5         | 485                   | 4/Y<br>574                              | 625                        | 434                         |  |  |
| 42.3<br>24 A        | 40.4<br>55 g      | 10.8         | 400                   | 503                                     | 651                        | 430                         |  |  |
| 2.4.4               | 76.6              | 23.4         | 470                   | 660                                     | 660                        | -1)L                        |  |  |
| 87.2                |                   | 12.8         | 545                   |                                         | 538                        |                             |  |  |
| 84.0                | 2.7               | 13.3         | 538                   |                                         | 562                        |                             |  |  |
| 76.6                | 8-8               | 14.6         | 538                   | 471                                     | 602                        | 434                         |  |  |
| 67.7                | 16.2              | 16.1         | 520                   | 474                                     | 624                        | 435                         |  |  |
| 56.7                | 25.3              | 18.0         | 486                   | 478                                     | 648                        | 436                         |  |  |
| 42_8                | 36.8              | 20.4         | 481                   | 527                                     | 665                        | 434                         |  |  |
| 24.7                | 51.8              | 23.5         | 478                   | 594                                     | 686                        | 429                         |  |  |
|                     | 12.3              | 21.1         | 620                   | 000                                     | 100                        |                             |  |  |
| 84./                |                   | 15.5         | 538                   | 165                                     | 510                        | A76                         |  |  |
| 77.5<br>K\$ A       | 13.0              | 19.6         | 552<br><b><??</b></b> | 474                                     | 643                        | 430                         |  |  |
| 57.3                | 21.9              | 20.8         | 495                   | 476                                     | 670                        | 434                         |  |  |
| 43.3                | 33.1              | 23.6         | 481                   | 503                                     | 688                        | 435                         |  |  |
| 25.0                | 47.8              | 27.2         | 479                   | 583                                     | 715                        | 434                         |  |  |
| <u> </u>            | 67.8              | 32.2         |                       | 660                                     | 724                        |                             |  |  |
| 81.8                | <u> </u>          | 18.2         | 538                   |                                         | 572                        |                             |  |  |
| 78.0                | 3.0               | 19.0         | 537                   |                                         | 625                        |                             |  |  |
| 69.0                | 9.9               | 21.1         | 536                   | 470                                     | 666                        | 437                         |  |  |
| 57.9                | . 18.5            | 23.6         | 507                   | 477                                     | 692                        | 434                         |  |  |
| 43.9                | 29.3              | 26.8         | 481                   | 481                                     | 713                        | 437                         |  |  |
| 25.A                | 43.6              | 31.0         | 478                   | 574                                     | 150                        | <del>7</del> 5 <del>7</del> |  |  |
|                     | 03.2              | 30.8         | <b>679</b>            | 000                                     | 134                        |                             |  |  |
| 18.0                | 66                | 21.4<br>92 T | -338<br>579           | 460                                     | 677                        | 435                         |  |  |
| 586                 | 14.0              | 265          | 518                   | 472                                     | 703                        | 435                         |  |  |
| 44.4                | 25.4              | 30.2         | 477                   | 477                                     | 732                        | 434                         |  |  |
| 257                 | 39.3              | 350          | 479                   | 567                                     | 758                        | A74                         |  |  |

| Mole % |                   |                    | Temperature of phase disappearance (°C) |                           |               |                |  |
|--------|-------------------|--------------------|-----------------------------------------|---------------------------|---------------|----------------|--|
| LiCl   | CaCl <sub>2</sub> | CaCr0 <sub>4</sub> | a<br>(LiCl)                             | β<br>(CaCl <sub>2</sub> ) | 7<br>(CaCrO4) | δ<br>(LiC3Cl3) |  |
| _      | 58.4              | 41.6               | · · · · · · · · · · · · · · · · · · ·   | 660                       | 784           |                |  |
| 75.1   |                   | 24.9               | 538                                     |                           | 639           |                |  |
| 70.4   | 3.3               | 26.3               | 532                                     | 450                       | 686           | 434            |  |
| 59.2   | 11.3              | 29.5               | 525                                     | 470                       | 722           | 436            |  |
| 44.9   | 21.5              | 33.6               | 483                                     | 478                       | 749           | 434            |  |
| 26.1   | 34.9              | 39.0               | 474                                     | 548                       | 778           | 425            |  |
| ·      | 53.5              | 46.5               |                                         | 660                       | >800          |                |  |
| 71.1   | <u> </u>          | 28.9               | 538                                     |                           | 673           |                |  |
| 59.9   | 7.6               | 32.5               | . 522                                   | 463                       | 734           | 432            |  |
| 45.5   | 17.4              | 37.1               | 472                                     | 472                       | <b>7</b> 76   | 436            |  |
| 26.5   | 30.3              | 43.2               | 477                                     | 541                       | >800          | 434            |  |
| 66.5   |                   | 33.5               | 538                                     |                           | 710           |                |  |
| 60.5   | 3.9               | 35.6               | 535                                     | 452                       | 755           | 436            |  |
| 46.1   | 13.2              | 40.7               | 512                                     | 470                       | 792           | 435            |  |
| 61.2   |                   | 38.8               | 538                                     |                           | 749           |                |  |
| 46.7   | 8.9               | 44.4               | 525                                     | 469                       | >800          | 434            |  |
| 63.2   | 32.9              | 3.9                | 479                                     | 479                       | 479           | 435            |  |
| 20.0   | 65.0              | 15.0               | 479                                     | 610                       | 610           | 435            |  |
| 28.5   | 36.5              | 35.0               | 479                                     | 552                       | 761           | 435            |  |

TABLE 1 (continued)



Fig. 4. Typical DTA curves for the system LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub>. (a) 28.5% LiCl-36.5% CaCl<sub>2</sub>-35.0% CaCrO<sub>4</sub>; (b) 20.0% LiCl-65.0% CaCl<sub>2</sub>-15.0% CaCrO<sub>4</sub>; (c) 63.2% LiCl-32.9% CaCl<sub>2</sub>-3.9% CaCrO<sub>4</sub>.



Fig. 5. An isothermal representation of the liquidus surface for the LiCl-CaCl2-CaCrO4 system.

The phase diagram for the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> system is shown with the isothermal representation of the liquidus surface in Fig. 5. The ternary eutectic that is seen at 63.2 mole % LiCl-32.9% CaCl<sub>2</sub>-3.9% CaCrO<sub>4</sub> has a melting point of 479°C. In Fig. 6 the three-phase lines connecting the three binary eutectics with the ternary eutectic are observed. The arrows represent the direction of decreasing temperature.

An isothermal representation of the secondary crystallization surface is shown in Fig. 7. At temperatures above this surface, but below the liquidus surface (Fig. 5), both a liquid phase and one solid phase will exist. The particular solid phase present will depend on the composition of the mixture.

# TABLE 2 SUMMARY OF DATA FROM THE LICI-CaCl<sub>2</sub>-CaCrO<sub>4</sub> PHASE DIAGRAM

| System                                     | Significant point                                                                              |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| LiCl-CzCl <sub>2</sub>                     | Compound at 50.0 mole % CaCl <sub>2</sub> , decomposes at 439 °C                               |  |  |  |
| -                                          | Eutectic at 36.3 mole % CaCl <sub>2</sub> , m.p. 487 °C                                        |  |  |  |
| LiCI-CaCrO <sub>4</sub>                    | Entectic at 14.3 mole % CaCrO <sub>4</sub> , m.p. 538°C                                        |  |  |  |
| CaClCaCrOs                                 | Entectic at 23.4 mole % CaCrO <sub>4</sub> , m.p. 660 °C                                       |  |  |  |
| LiCI-CaCl <sub>2</sub> -CaCrO <sub>4</sub> | Entectic at 63.2 mole % LiCl-32.9% CaCl <sub>1</sub> -3.9% CaCrO <sub>4</sub> , m.p.<br>479 °C |  |  |  |
|                                            | Four-phase equilibrium at 435°C                                                                |  |  |  |

28



Fig. 6. The three-phase equilibrium lines for the LiCI-CaCI2-CaCrO4 system.

A summary of data from the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram is shown in Table 2.

Examination of both vertical and isothermal sections through the phase diagram is useful in developing a more complete understanding of the diagram. Figures 8 and 9 are vertical sections in which the LiCl to  $CaCl_2$  mole ratio is held constant. The section in Fig. 8 (LiCl to  $CaCl_2$  ratio equal to 30/70) intersects the three-phase line connecting the  $CaCl_2$ -CaCrO<sub>4</sub> eutectic with the ternary eutectic. The section in Fig. 9 (LiCl to  $CaCl_2$  ratio equal to 65/35) intersects two three-phase lines; one connecting the LiCl-CaCrO<sub>4</sub> binary eutectic with the ternary eutectic and the other connecting the LiCl-CaCl<sub>2</sub> binary eutectic with the ternary eutectic. Both sections intersect the four-phase equilibrium plane.

Figures 10-13 are vertical sections with constant CaCrO<sub>4</sub> concentrations ranging from 5 to 30 mole % CaCrO<sub>4</sub>. Figures 14-19 are isothermal sections, each of which shows the phases present as a function of composition for one constant temperature. At 425°C (Fig. 14) all four solid phases are present, depending on composition. At 450°C (Fig. 15), it is observed that the  $\delta$  phase (LiCaCl<sub>3</sub>) has uisappeared. At 500°C (Fig. 16) the appearance of a liquid phase is observed. Figures 17-19 show the diappearance of the various solid phases as temperature increases.



Fig. 7. An isothermal representation of the secondary crystallization surface for the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> system.



Fig. 8. A vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram (LiCl to CaCl<sub>2</sub> mole ratio constant at 30/70).



Fig. 9. A vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram (LiCl to CaCl<sub>2</sub> mole ratio constant at 65/35).



Fig. 10. Constant 5 mole % CaCrO<sub>4</sub> vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 11. Constant 10 mole % CaCrO<sub>4</sub> vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 12. Constant 15 mole % CaCrO<sub>4</sub> vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 13. Constant 30 mole % CaCrO<sub>4</sub> vertical section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 14. The 425°C isothermal section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 15. The 450 °C isothermal section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 16. The 500°C isothermal section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.



Fig. 17. The 600°C isothermal section through the LiCl-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.





Fig. 19. The 700°C isothermal section through the LiCI-CaCl<sub>2</sub>-CaCrO<sub>4</sub> phase diagram.

## ACKNOWLEDGEMENTS

The author wishes to acknow'edge the laboratory work performed by A. H. Andazola and F. W. Reinhardt of Sandia Laboratories and the X-ray diffraction analyses performed by G. T. Gay of Sandia Laboratories.

This work was supported by th: United States Energy Research and Development Administration.

#### REFERENCES

- 1 B. H. Van Domelen and R. D. Wehr<sup>1</sup>:, A Review of Thermal Battery Technology, Proceedings of the 9th Intersociety Energy Compassion Engineering Conference, The American Society of Mechanical Engineers, 1974.
- 2 R. P. Clark and K. R. Grothaus, J. Electrochem. Soc., 118 (1971) 1680.
- 3 V. E. Plyushchev and F. V. Kovalev, Zh. Neorg. Khim., 1 (1956) 1016.
- 4 R. P. Clark, R. L. Blucher and H. J. Goldsmith, J. Chem. Eng. Data, 14 (1969) 465.
- 5 R. P. Clark and F. W. Reinhardt, Thermochim. Acta, 14 (1976) 113.
- 6 R. P. Clark and F. W. Reinhardt, Thermochim. Acta, 12 (1975) 309.
- 7 M. S. Golubeva and A. G. Bergman, Zh. Obshch. Khim., 24 (1954) 1940.